Useful for transgenic operations that involve potatoes, astragalus, rosaceae, tobacco and other plants.
C58C1 ElectroCompetent Agrobacterium
$355.00 – $755.00
Description
Intact Genomics (ig®) C58C1 ElectroCompetent Agrobacterium cells are optimized for the highest transformation efficiency and are useful for various applications. The chromosomal background of C58C1 is C58. C58 is cured of the Ti plasmid pTiC58 resulting in C58C1. These competent cells may be useful for transgenic operations that involve Arabidopsis and other plants. This Agrobacterium strain is streptomycin and rifampicin-resistant.
Specifications
Competent cell type: Electrocompetent
Species: A. tumefaciens
Strain: C58C1
Format: Tubes
Transformation efficiency: ≥ 1 x 107 cfu/µg pCAMBIA1391z DNA
Blue/white screening: No
Shipping condition: Dry ice
Reagents Needed for One Reaction
C58C1 ElectroCompetent Agrobacterium: 25 µl
DNA (pCAMBIA1391z, 500 pg/µl): 1 µl
Recovery medium: 1 ml
Storage
C58C1 ElectroCompetent Agrobacterium: -80 ºC
pCAMBIA1391z control DNA: -20 ºC
Recovery medium: 4 ºC
Quality Control
Transformation efficiency is tested by using the pCAMBIA1391z control DNA supplied with the kit and using the protocol in this manual. Transformation efficiency should be ≥1 x 107 CFU/µg pCAMBIA1391z DNA. Untransformed cells are tested for appropriate antibiotic sensitivity.
Please note, all agrobacterial strains are not well-studied for antibiotic resistance and there are many agrobacterial strains. Therefore, it is the customer’s responsibility to make sure his/her vectors are compatible with the Agrobacterial strains if he/she uses an alternate antibiotic selection than kanamycin-selection.
1286-12 1286-36
Technical Support
Intact Genomics is committed to supporting the worldwide scientific research community by supplying the highest quality reagents. Each new lot of our products is tested to ensure they meet the quality standards and specifications designated for the product. Please follow the instructions carefully and contact us if additional assistance is needed. We appreciate your business and your feedback regarding the performance of our products in your applications.
Additional information
µl | 6×50µl, 18×50µl |
---|
Transformation Protocol
Use this procedure to transform C58C1 ElectroComp Agrobacterium. Do not use these cells for chemical transformation.
1) Place sterile cuvettes and microcentrifuge tubes on ice.
2) Remove competent cells from the -80 °C freezer and thaw completely on wet ice (10-15 minutes).
3) Aliquot 1 µl ( 10pg -1 µg) of DNA to the chilled microcentrifuge tubes on ice.
4) When the cells are thawed, add 25 μl of cells to each DNA tube on ice and mix gently by tapping 4-5 times. For the pCAMBIA1391z control, add 1 µl of (500 pg/µl) DNA to the 25 µl of cells on ice. Mix well by tapping. Do not pipette up and down or vortex to mix, this can harm cells and decrease transformation efficiency.
5) Pipette 26 µl of the cell/DNA mixture into a chilled electroporation cuvette without introducing bubbles. Quickly flick the cuvette downward with your wrist to deposit the cells across the bottom of the well and then electroporate.
6) Immediately add 974 µl of Recovery Medium or any other medium of choice to the cuvette, pipette up and down three times to re-suspend the cells. Transfer the cells and Recovery Medium to an Eppendorf tube.
7) Incubate tubes at 30 °C for 3 hours at 200 RPM.
8) Dilute the cells as appropriate then spread 20-200 μl cells onto a pre-warmed selective plate. For the pCAMBIA1391z control, you may plate 100 μl of undiluted transformation mix onto a YT plate containing 15 μg/ml rifampicin and 50 μg/ml kanamycin. Use a sterilized spreader or autoclaved ColiRoller™ plating beads to spread evenly.
9) Incubate the plates for 2 – 3 days at 30 °C.
Electroportation settings
Mode: Exponential protocol
Voltage (V): 1,800 V
Capacitance: 25 uFD
Resistance: 200 Ohms
Cuvette: 1 mm